Friction stir welding of hydrogen cryogenic tank is the solution for a greener aircraft high weld resistance, lighter tank and a lower price.
Hydrogen is difficult to store. This gas has a very low density at ambient temperature and pressure: a volume of 11 m3 is needed to contain 1 kilo of hydrogen.
Storing it at room temperature and pressure is nonsense since it would take up too much space. Two options are therefore possible: either storing it under pressure in the gaseous state either cooling it to -252.85°C, its liquefaction temperature.
The optimal option is to liquefy it at a temperature lower than -253°C. In this case, the cryogenic tank is subjected to lower pressure as a liquid is less compressible than a gas. At the moment, this cryogenic temperature storage solution is used in the space sector, for hydrogen tanks, rocket fuel, and is being strongly considered in the aeronautics world. This solution is preferred to the pressurised tank for reasons of space and safety. Indeed, the density of liquid H2 is much higher than that of pressurised gas, making it possible to store the same quantity of hydrogen in a reduced volume. Moreover, this avoids the use of high pressures (700 bar) and the risks inherent in this solution.